参考文献

1.
Kuiper RP, Vissers LE, Venkatachalam R et al. Recurrence and variability of germline EPCAM deletions in Lynch syndrome. Hum Mutat. 2011; 32(4): 407-414.
2.
Niessen RC, Hofstra RM, Westers H et al. Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosomes Cancer. 2009; 48(8): 737-744.
3.
Goel A, Nguyen TP, Leung HC et al. De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer. 2011; 128(4): 869-878.
4.
Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003; 348(10): 919-932.
5.
Peltomaki P. Lynch syndrome genes. Fam Cancer. 2005; 4(3): 227-232.
6.
McGivern A, Wynter CV, Whitehall VL et al. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer. 2004; 3(2): 101-107.
7.
Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017; 357(6349): 409-413.
8.
Alicia Latham, Preethi Srinivasan, Yelena Kemel et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J Clin Oncol. 2018 [Epub ahead of print]
9.
McGivern A, Wynter CV, Whitehall VL et al. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Fam Cancer. 2004; 3(2): 101-107.
10.
Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016; 22(11): 1342-1350.
11.
Asaka S. Arai Y, Nishimura Y et al. Microsatellite instability-low colorectal cancer acquires a KRAS mutation during the progression from Dukes' A to Dukes' B. Carcinogenesis. 2009; 30(3): 494-499.
12.
Ishikubo T. Nishimura Y, Yamaguchi K et al. The clinical features of rectal cancers with high-frequency microsatellite instability (MSI-H) in Japanese males. Cancer Lett. 2004; 216(1): 55-62.
13.
Fujiyoshi K. Yamamoto G, Takenoya T et al. Metastatic Pattern of Stage IV Colorectal Cancer with High-Frequency Microsatellite Instability as a Prognostic Factor. Anticancer Res. 2017; 37(1): 239-247.
14.
Kajiwara T. Shitara K, Denda T et al. The Nationwide Cancer Genome Screening Project for Gastrointestinal Cancer in Japan (GI-SCREEN): MSI-status and cancer-related genome alterations in advanced colorectal cancer (CRC)-GI-SCREEN 2013-01-CRC sub-study. J Clin Oncol. 2016; 34(suppl_15): abstr 3537.
15.
Koinuma K, Shitoh K, Miyakura Y et al. Mutations of BRAF are associated with extensive hMLH1 promoter methylation in sporadic colorectal carcinomas. Int J Cancer. 2004; 108(2): 237-242.
16.
An JY, Kim H, Cheong JH et al. Microsatellite instability in sporadic gastric cancer: Its prognostic role and guidance for 5-FU based chemotherapy after R0 resection. Int J Cancer. 2012; 131(2): 505-511.
17.
Yamamoto H, Perez-Piteira J, Yoshida T et al. Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology. 1999; 116(6): 1348-1357.
18.
Choi YY, Bae JM, An JY et al. Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J Surg Oncol. 2014; 110(2): 129-135.
19.
Schulmann K, Brasch FE, Kunstmann E et al. HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterology. 2005; 128(3): 590-599.
20.
Chiappini F, Gross-Goupil M, Saffroy R et al. Microsatellite instability mutator phenotype in hepatocellular carcinoma in non-alcoholic and non-virally infected normal livers. Carcinogenesis. 2004; 25(4): 541-547.
21.
Goeppert B, Roessler S, Renner M et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br J Cancer. 2019; 120(1): 109-114.
22.
Roa JC, Roa I, Correa P et al. Microsatellite instability in preneoplastic and neoplastic lesions of the gallbladder. J Gastroenterol. 2005; 40(1): 79-86.
23.
Cloyd JM, Chun YS, Ikoma N et al. Clinical and Genetic Implications of DNA Mismatch Repair Deficiency in Biliary Tract Cancers Associated with Lynch Syndrome. J Gastrointest Cancer. 2018; 49(1): 93-96.
24.
Yamamoto H, Itoh F, Nakamura H et al. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res. 2001; 61(7): 3139-3144.
25.
Humphris JL, Patch AM, Nones K et al. Hypermutation In Pancreatic Cancer. Gastroenterology. 2017; 152(1): 68-74.
26.
Cloyd JM, Katz MHG, Wang H et al. Clinical and Genetic Implications of DNA Mismatch Repair Deficiency in Patients With Pancreatic Ductal Adenocarcinoma. JAMA Surg. 2017; 152(11): 1086-1088.
27.
Hu ZI, Shia J, Stadler ZK et al. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin Cancer Res. 2018; 24(6): 1326-1336.
28.
Lupinacci RM, Goloudina A, Buhard O et al. Prevalence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology. 2018; 154(4): 1061-1065.
29.
Riazy M, Kalloger SE, Sheffield BS et al. Mismatch repair status may predict response to adjuvant chemotherapy in resectable pancreatic ductal adenocarcinoma. Mod Pathol. 2015; 28(10): 1383-1389.
30.
Koornstra JJ, Mourits MJ, Sijmons RH et al. Management of extracolonic tumours in patients with Lynch syndrome. Lancet Oncol. 2009; 10(4): 400-408.
31.
Barrow E, Robinson L, Alduaij W et al. Cumulative lifetime incidence of extracolonic cancers in Lynch syndrome: a report of 121 families with proven mutations. Clin Genet. 2009; 75(2): 141-149.
32.
Dowty JG, Win AK, Buchanan DD et al. Cancer risks for MLH1 and MSH2 mutation carriers. Hum Mutat. 2013; 34(3): 490-497.
33.
Pal T, Permuth-Wey J, Kumar A et al. Systematic review and meta-analysis of ovarian cancers: estimation of microsatellite-high frequency and characterization of mismatch repair deficient tumor histology. Clin Cancer Res. 2008; 14(21): 6847-6854.
34.
Goodfellow PJ, Buttin BM, Herzog TJ et al. Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci USA. 2003; 100(10): 5908-5913.
35.
Kim J, Kong JK, Yang W et al. DNA Mismatch Repair Protein Immunohistochemistry and MLH1 Promotor Methylation Testing for Practical Molecular Classification and the Prediction of Prognosis in Endometrial Cancer. Cancers. 2018; 10(9): E279.
36.
Huang D, Matin SF, Lawrentschuk N et al. Systematic Review: An Update on the Spectrum of Urological Malignancies in Lynch Syndrome. Bladder Cancer. 2018; 4(3): 261-268.
37.
Harper HL, McKenney JK, Heald B et al. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome. Mod Pathol. 2017; 30(1): 146-156.
38.
Therkildsen C, Eriksson P, Höglund M et al. Molecular subtype classification of urothelial carcinoma in Lynch syndrome. Mol Oncol. 2018; 12(8): 1286-1295.
39.
Brennetot C, Buhard O, Jourdan F et al. Mononucleotide repeats BAT-26 and BAT-25 accurately detect MSI-H tumours and predict tumor content: implications for population screening. Int J Cancer. 2005; 113(3): 446-450.
40.
Bando H, Okamoto W, Fukui T et al. Utility of the quasi-monomorphic variation range in unresectable metastatic colorectal cancer patients. Cancer Sci. 2018; 109(11): 3411-3415.
41.
Wang Y, Shi C, Eisenberg R et al. Differences in Microsatellite Instability Profiles between Endometrioid and Colorectal Cancers: A Potential Cause for False-Negative Results? J Mol Diagn. 2017; 19(1): 57-64.
42.
Hempelmann JA, Scroggins SM, Pritchard CC et al. MSIplus for Integrated Colorectal Cancer Molecular Testing by Next-Generation Sequencing. J Mol Diagn. 2015; 17(6): 705-714.
43.
FoundationOne SUMMARY OF SAFETY AND EFFECTIVENESS DATA (SSED)
44.
Middha S, Zhang L, Nafa K et al. Reliable Pan-Cancer Microsatellite Instability Assessment by Using Targeted Next-Generation Sequencing Data. JCO Precis Oncol. 2017[Epub ahead of print]
45.
Hause RJ, Pritchard CC, Shendure J et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016; 22(11): 1342-1350.
46.
Bonneville R, Krook MA, Kautto EA et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol. 2017[Epub ahead of print]
47.
Haraldsdottir S, Roth R, Pearlman R et al. Mismatch repair deficiency concordance between primary colorectal cancer and corresponding metastasis. Fam Cancer. 2016; 15(2): 253-260.
48.
Barnetson R, Eckstein R, Robinson B et al. There is no increase in frequency of somatic mutations in metastases compared with primary colorectal carcinomas with microsatellite instability. Genes Chromosomes Cancer. 2003; 38(2): 149-156.
49.
Jung J, Kang Y, Lee YJ et al. Comparison of the Mismatch Repair System between Primary and Metastatic Colorectal Cancers Using Immunohistochemistry. J Pathol Transl Med. 2017; 51(2): 129-136.
50.
Bao F, Panarelli NC, Rennert H et al. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma. Am J Surg Pathol. 2010; 34(12): 1798-1804.
51.
Watanabe Y, Koi M, Hemmi H et al. A change in microsatellite instability caused by cisplatin-based chemotherapy of ovarian cancer. Br J Cancer. 2001; 85(7): 1064-1069.
52.
Ishida Y, Agata Y, Shibahara K et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992; 11(11): 3887-3895.
53.
Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017; 357(6349): 409-413.
54.
KEYNOTE-164 承認時評価資料
55.
KEYNOTE-158 承認時評価資料
56.
Domingo E1, Laiho P, Ollikainen M et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet. 2004; 41(9): 664-668.
57.
Overman MJ, McDermott R, Leach JL et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017; 18(9): 1182-1191.
58.
Overman MJ, Lonardi S, Wong KYM et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol. 2018; 36(8): 773-779.
59.
Segal NH, Wainberg ZA, Overman MJ et al. Safety and clinical activity of durvalumab monotherapy in patients with microsatellite instability–high (MSI-H) tumors. J Clin Oncol. 2019; 37(suppl_4): abstr670.
60.
Muro K, Van Cutsem E, Narita Y et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with metastatic gastric cancer; a JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS, SSO and TOS. Ann Oncol. 2019; 30(1): 19-33.
61.
Eggermont AMM, Blank CU, Mandala M et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N Engl J Med. 2018; 378(19): 1789-1801.
62.
Romano E, Scordo M, Dusza SW et al. Site and timing of first relapse in stage III melanoma patients: implications for follow-up guidelines. J Clin Oncol. 2010; 28(18): 3042-3047.
63.
Antonia SJ, Villegas A, Daniel D et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N Engl J Med. 2018; 379(24): 2342-2350.
64.
Aaltonen LA. Peltomäki P, Mecklin JP et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994; 54(7): 1645-1648.
65.
KEYNOTE-016試験、KEYNOTE-164試験(コホートA)、KEYNOTE-012試験、KEYNOTE-028試験、KEYNOTE-158試験 FDA承認時評価資料
66.
Mangold E, Pagenstecher C, Friedl W et al. Tumours from MSH2 mutation carriers show loss of MSH2 expression but many tumours from MLH1 mutation carriers exhibit weak positive MLH1 staining. J Pathol. 2005; 207(4): 385-395.
67.
Wahlberg SS, Schmeits J, Thomas G et al. Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res. 2002; 62(12): 3485-3492.
68.
Bellizzi AM, Frankel WL. Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv Anat Pathol. 2009; 16(6): 405-417.
69.
Cohen R, Hain E, Buhard O et al. Association of Primary Resistance to Immune Checkpoint Inhibitors in Metastatic Colorectal Cancer With Misdiagnosis of Microsatellite Instability or Mismatch Repair Deficiency Status. JAMA Oncol. 2018 [Epub ahead of print].
70.
Vanderwalde A, Spetzler D, Xiao N et al. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018; 7(3): 746-756.
71.
Artyomenko A, Sikora M, Lefterova M et al. Microsatellite instability detection by targeted sequencing of cell-free DNA. Ann Oncol. 2018; 29(suppl_8): abstr 1190P.
72.
Deng A, Yang J, Lang J et al. Monitoring microsatellite instability (MSI) in circulating tumor DNA by next-generation DNA-seq. J Clin Oncol. 2018; 36(suppl_15): abstr 12025. lating tumor DNA by next-generation DNA-seq. J Clin Oncol. 2018; 36(suppl_15): abstr 12025.